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W.B. Gragg** L. Reichel**
Naval Postgraduate School Bergen Scientific Centre
Department of Mathematics Allegaten 36
Monterey, CA 93943, USA N-5007 Bergen, Norway

Abstract: Let H E Cnxn be a unitary upper Hessenberg matrix whose eigen-

values, and possibly also eigenvectors, are to be determined. We describe

how this eigenproblem can be solved by a divide and conquer method, in

which the matrix H is split into two smaller unitary right Hessenberg

matrices HI and 112 by a rank-one modification of 11. The eigenproblems for

11, and 112 can be solved independently, and the solutions of these smaller

eigenproblems define a rational function, whose zeros on the unit circle

are the eigenvalues of I. The eigenvectors of H can be determined from

the eigenvalues of I and the eigenvectors of H, and 112. The outlined

splitting of unitary upper Hessenberg matrices into smaller such matrices

is carried out recursively. This gives rise to a divide and conquer

method that is suitable for implementation on a parallel computer.

When 11 E Rnxn is orthogonal, the divide and conquer scheme simplifies

and is described separately. Our interest in the orthogonal eigenproblem

stems from applications in signal processing. Numerical examples for the

orthogonal eigenproblem conclude the paper.
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1. Introduction

Divide and conquer (DC) methods have been developed for the symmetric

eigenproblem, see Cuppen [Cu] , Dongarra and Sorenson [DS], and

Krishnakumar and Morf [K0] , and have for these problems been shown to be

efficient on parallel computers and competitive on single processor

machines [DS],[Cu], [KM]. The DC method has also been applied successfully

to the computation of singular values by Jessup and Sorensen [JS] . In the

present paper we describe a DC method for the unitary eigenproblem, and we

also discuss the simplifications that arise for real orthogonal matrices.
Let H E Cnxn be unitary. Then 1i is unitarily similar to a upper

flessenberg matrix with real-valued non-negative subdiagonal elements. If

a subdiagonal element vanishes, then the eigenproblem splits into

eigenproblems for smaller upper Hessenberg matrices. We therefore may

assume that I is a upper lessenberg matrix with positive subdiagonal

elements. Then all eigenvalues of 11 are simple. It is easily seen that 1H

can be written as a product of n Givens reflectors G E Cnxn,

II = 11(7 1 ,7 2 , ... 1n):= G1 G2 ... G l (1.1)

where, for 1 < k < n,

Ik-1

-3k akGk. := k 7k EC(,cak E , Ok >O0

LkIn-k-1 IYk1 2  + k - 1, (1.2a)

an'

Gn :: ; -in E C, I ni 1 (1.2b)
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Here Ij denotes the jxj identity matrix. The -j, 1 < j < n, are the so-

called Schur parameters of H1, and j denotes the complex conjugate of 1j.

The a, 1 < j < n, are said to be complementary parameters of Hl, and are

the subdiagonal elements of ti.

The DC method described uses the product representation (1.1) of H,

the so-called Schur parametric form of H. An application of particular

interest to us is the computation of Pisarenko frequency estimates for a

random stationary stochastic process, see below. In this application H is

defined by its Schur parametric form. The determination of Gaussian

quadrature rules on the unit circle, so-called Gauss-Szeg6 quarature

rules, also gives rise to unitary (or real orthogonal) matrices in Schur

parametric form, see Section 5. When the Schur parameters are not

explicitly known, they can be computed from

=1 -1111

'YjH -(i H Gi H H j, j :2 3 . ,n= (Gj-1 j- 2  . .. G2  G1  j ...

where Gil denotes the conjugate transpose of Gk, and NI. denotes the element

kJ

(j ,j) of a matrix M E Cnxn.

The DC method is most easily described for HI E Rnxn orthogonal. Then

H = G, G 2 ... Gs_1 Gs Gs+ ... Gn =: I] 6Gs H 2 ,1  (1.3)

where H, E Rsxs and 112 E R(n - s )x(n - s) are orthogonal. The Givens reflector

Gs E Rnxn, s < n, can be written as a Householder transformation

Gs = I - 2wwH  (1.4)

where:

3



w esws + es+Iws+ 1 E R" , (1.5)

Ws = 1 (1 + s) 1/2 , (1 .6a)

ws+ : 21/2 (1 - 1/2 (1 .6b)

Throughout this paper ej denotes the jth column of an identity matrix of

appropriate order. By (1.3)-(1.4), If is orthogonally similar to

If' := fl 1 2ww H )  =: 2ww H  (1.7)

This is one step of the DC method for orthogonal matrices: The eigen-

values, and if so desired the eigenvectors, of H, and 112 are computed

first. tH' is a rank-one modification of 11, and the eigenvalues of I are

computed as the zeros on the unit circle of a rational function, whose

poles are the eigenvalues of H'.

Section 2 describes the DC method for unitary matrices. In Section 3

we show some results on the orthogonality of the eigenvectors and on the

location of the eigenvalues. These results are analogous to bounds

presented by Dongarra and Sorensen [DS] for the DC method for symmetric

matrices. Section 4 discusses simplifications that can be made when

H is real and orthogonal, and also considers some computational details.

Computed examples for the orthogonal eigenvalue problem are presented in

Section 5.

An outline of a unitary DC method with convergence results for the

root-finder has previously been presented in [GR] . The splitting into

subproblems is done differently in the present paper. A related DC method

is described by Arbenz and Golub [AG]. Cybenko [Cy] reduces the

orthogonal eigenproblem to an eigenproblem for a symmetric tridiagonal

4



matrix. The orthogonal eigenproblem is in [AGR1] solved by solving

singular value problems for certain bidiagonal matrices, and a QR

algorithm for unitary matrices is presented in [Gr1]. A comparison with

respect to accuracy and speed of these methods still remains to be done.

Here we only note that DC methods are suitable for implementation on

parallel computers, see [DS] ,[KM], and Section 2. Some of the schemes

mentioned transform the orthogonal eigenvalue problem to a symmetric one.

The real eigenvalues of the latter problem are then mapped to the unit

circle to yield the eigenvalues of the orthogonal eigenproblem. The

mapping from the interval to the init circle may be sensitive to

perturbations of arguments near the end points of the interval, and it may

therefore be difficult to determine eigenvalues close to ±1 accurately

with these schemes.

Pisarenko [Pi] proposed a method for decomposing a random stationary

stochastic process {Xm0 o, xm E R, into a sum of harmonics in white

noise, i.e.,

p
Xm = O ag cos(meC + Of)+yn, m > 0 (1.8)

f=1

where the Of are arbitrary phase shifts and {ymlt is a zero mean white}m=0 i eoma ht

noise process with variance 02 The Oe are called Pisarenko frequency

estimates. Assume for simplicity that p is the number of distinct

harmonics in the 'signal' f xm}' is known, and that 0 < < for}m=0isnon ntht0<€< fr

_f < p. Then the €t can be determined as follows. Form the

(2p+l)x(2p+l) Toeplitz covariance matrix Ni for the signal {rxmIr=0, and
2  2P] L t { J J l b

compute its least eigenvalue Amrn* Then A = 0.2, see [Pi. Let be

the Schur parameters associated with the Toeplitz matrix Nt-Aminl. They can

5



be determined from the Szego recursions (Levinson's algorithm), see e.g.

[AGR2]. From our assumptions it follows that M-AminI is singular, but

leading principal submatrices not identical with MN-AminI are not.

Therefore, -1 < Ij < 1 for 1 < j < 2p, and 72p E {1,1}. By (1.1)-(1.2) it

follows that the Schur parameters {j}j idefine an orthogonal matrix H E

R2PX2P with distinct eigenvalues {Aj}7PI . Enumerate the eigenvalues so that

those with Im(Ai) > 0 have smaller index than the eigenvalues with lm(Aj) <

0. Then the Pisarenko frequency estimates are given by

Oj := arg(Aj) , 1 < i _< p

The coefficients aj of (1.8) are two times the weights belonging to the

Gauss-Szeg6 quadrature rule with abscissas Aj, 1 < j < p. For details see

[AGR2], where also references to related work can be found. The unitary

DC method yields the Gauss-Szeg6 weights with no extra computational

effort when computing the eigenvalues Aj. Gauss-Szeg6 quadrature is

discussed in Example 5.1 of Section 5.

6



2. The unitary eigenproblem

In this section we describe a divide and conquer method for unitary

right Ilessenberg matrices with positive subdiagonal elements. First we

need to gcneralize the splitting (1.3)-(1.7) to Givens reflectors with

complex-valued Schur parameters. This is accomplished by noting that the

Gs defined by (1.2a) are diagonally unitarily equivalent with a real

Householder transformation. Introduce

I 'Y/ I i S #R4 0
*Is :

1is = 0

Then I = 1, and for G5 defined by (1.2a) we obtain

I+1  is

" s Gs 7is

In-s  I n-s- 1
Is-1

Os ' " n' s l (2.1)
I -s-1-

where, similarly to (1.5)-(1.6), = esws + es+lws+i E R" and

ws := 2-1/2(1 + ISl) / 2  , (2.2a)

WS+( : - (1 - s si) (2.2b)

Substitution of (2.1) into (1.1) yields

tl = (I - 2wwH) 1 (2.3)

7



with

H, H (7i1 1 2 , 9 • s-1 s -Is)

2 l(T S - 2 . . I "S I I n

A unitary similarity transform of (2.3) yields, analogously with (1.7),

H' [ (I - 2wwH) H - 2HwwH (2.4)1-12

Let

Ilk Wk Ak W , k = 1, 2, (2.5)

be spectral resolutions, i.e., the W4k are unitary and the Ak are diagonal.

Then II has the spectral resolution fi = ' A ,H, where

W j, A:= [ A diag(A1,A 2 ,... ,An) (2.6)

with lAk1 = 1 for 1 < k < n.

We are in a position to describe how the spectrum of If can be obtained

from A, the last row of W1 arid the first row of W 2 " Introduce the

characteristic polynomial

x(A) det(AI-t1) = det(AI-II') = det(AI-H+2FIwwH)

. det(AI-A) det(I+2(AI-)-lflwwH)

- (A) (1 + 2 wH (AI-'F)-1iw)

- ¢(A) (1 + 2wH '(AI-A) -1A Hw) ,

8



where If' is defined by (2.4), W and A by (2.6), w by (2.2) and V(A)

det(A[-H). Let z = [(3j= 1 be given by

:z HHw -- elws+l] (2.7)

and define the spectral function

(A)n Aj
O(A) = 1 + 2zH(AI-A)-'Az = 1 + 2 L 12 A__A

n 12 A + Aj
=A - (2.8)
3=1

where we have used that z Hz = 1. Let

1j := arg(A,) , 6 := arg(A) , 0 < Oj 0 < 27

Then, with i := 4 ,

(A) j 1 2 cot( 2 =: i¢() , (2.9)

j=l

l'cj=1 1=  I 12/sin2 -J 2 )> 1 zz = .- (2.1/0)

We may assume that the Oj are distinct and that all (j 0, because

otherwise we can make these conditions hold by deflation, see below. Let

0.' E [0, 21r[, 1 < j n, denote the zeros of 4(O). Then the eigenvalues of

t and of I1 are given by A'I := exp(io'), 1 < j < n. The sets {Oj}jU 1 and

{t0}jf 1 strictly interlace.

We describe a rootfinder for P(O). By the inequality (2.10). the

zeros of 4(O) can be determined accurately. We may assume that

9



0 < 01 < 02 < ... < On < 27r and that O(o), our initial approximation of a

zero of P(0), satisfies On- 2ff < O(0) < 01. By the strict interlacing of the

sets {0j}= and f04'}P=I, P(0) has prec i sel y one zero, denoted 01', in the

open interval ]On-27r, 01[. Assume for the moment that

0((0))  < , (2.11)

and introduce

() p + or cot 2 (2.12)

The coefficients p and o, are determined by osculatory interpolation. i.e.,

( 4)( 0(0)) $((0) (DI((O0)) , (2.13)

which yields

{ =  d(? (0 ) ) - 1(O(0)) s in (01  - O(0))

ac = 2 1!'(O~o)) sin2(6 1 2 0(0)))

'lhe zero 0(1) of *(0) in ]On-27r,0 1 [ is our next approximation of 01 . New

0j+l) (j)approximations 0 of 01, are computed from 0 ), j >_ 1, in a similar

fashion. The sequence {0(}J=P satisfies 00) <_ Ol for j _> 0, and converges

monotonically and quadratically to 01' as j increases, see [GR] for a

proof.

If instead of (2.11) we have

4t(0(0)) > 0 , (2.14)

then we replace (2.12) by

$() p 4 cr + °t(0 -,) (2.15)

1 0



( -)

in (2.13). This defines p and a. The zero 0( i ) of $(0) in the open

interval ]0,-21r,0 1 [ is our next approximation of 01 New approximations

00+1) of 01, are computed from 00 ) for j _> 1 in a similar fashion. The

sequence {O 0)}12C satisfies 0 0 ) > 0' for j _> 0, and converges monotonically

and quadratically to 01 see [GR]. In the implementation used to generate

the computed examples of Section 5, the iterations are carried out until

'D (00 + 1 ) _P( (i) < ( 0 (J-1)). The value 0(j ) is accepted as an approximate

root of D(O) = 0.

From

A =diag[e , , ... ,e ] (2.16)

and the spectral resolutions (2.5) of If, and 112, we can now compute the

spectral resolution of H:

II = WAWH , WHW =I (2.17)

By (2.3)-(2.4), we can for some vector a E Cn express If as

11 = ff - 2u H 
, u := I1 eswS E C

Let A := exp(iO) and v E C" form an eigenpair of 1t, i.e. lIv = vA. Then

(A - 2uaH)v = vA

or, equivalently,

H(ifI - IA)v = uO , a := 26 v

This shows that any normalized eigenvector v of 11 associated with the

eigelvalue A is a normalization of

11



v = (I-A I) 'u = ( -IA) liflesws]

2 (IxA,A)1 w¥j eV +11, (2.18)

where Wk and Ak are given by (2.5). Let II 112 denote the Euclidean vector

and matrix norms. From IIWlI 12  = IIW2112  = -- A1112  1 and (2.6), (2.7), (2.10),

(2.18) it follows that

6(A) := 1Iv'112 = II(A-IA) -' x2 J12

-- (n 1- 1 2 )1/2 = (1¢'(0))12 -1.2  (2.19)
j=1 I Aj _ A 1

We choose

vA L AIw 1  1( (2.20)
W2 (A 2 - I A)1W~el /(

and note that the lower bound (2.19) for 6(A) indicates that severe

cancellation of significant digits does not take place in the computation

of vA by (2.20).

By (2.7), we only require the last row of W 1 and the first row of W2

(as well as A) in order to determine the spectral function (2.8). Hence,

if we do not desire the eigenvectors, then it suffices to determine the

first and last rows of W in order to be able to compute the spectrum of

larger problems. We call the triplet {A,eltW,enW} the partial spectral

resolution of H. The first and last elements of vA can easily be

determined from

e Iv A e1 1W (I-A I A)- 'W , e sw /6 (A) (

{e~v~ = 1 .(2.21)

= A n- 2 (A 2 -lA)1W2 e ws+i/6(A)

12



We may assume that the columns of W are such that all components of theH H H

vector WHel are real and positive. Then ekW el is the weight correspond-

ing to the node exp(ik') in the Gauss-Szeg6 quadrature rule with nodes

{exp(ioj')}j = I, see [Gr2] and Example 5.1.

We assumed above all components (C of z to be non-vanishing and all

eigenvalues A, of H to be distinct. These conditions can be made to hold

true by deflation. Our discussion follows Dongarra and Sorensen [DS].

First assume that (j vanishes. By (2.4)-(2.7),

'H' = A - 2 lHHwwHW = A(l - 2zzH) (2.22)

and from etHz = 0 it follows that

A(l - 2zzH)ej = Ae, = Atee, At := eeHAeC (2.23)

Substituting (2.23) into (2.22) yields

Hf'WeC = iWetA ,

and therefore

W L W2 A 2 H] e = W 1 
W2 A 2 Hj etA t

Thus if c= 0, then we can determine an eigenpair of II without explicitly

computing a zero of D(O) and without using (2.20).

For a ge.eral z E C", with zHz = 1, we obtain

ffA(I-2zzH)eCIl2 = 21(tj

and we accept {AC,egl as an eigenpair of A if

13



2icei <_ (2.24)

for some small constant c,"

Assume that z = [(j]JPl with 21(jI > c1 for all j. We may now be able to

deflate due to close eigenvalues. Let A = diag[A 1 ,A 2 ,.. .,A,] with

A1 ; A2 , and choose the Givens reflector

G = 1 1 E C n x n  (2.25)

In-2

so that

Gz ( 112 + 1(2 12)112 ,10 ,(3 ,(4 ,5... ,5(n]T

i.e.

a = 1(21/( 1(112 + N 212) 1 / 2  5

_ -/(IQ12 + 1(212) 1/ 2

(1(~

We accept {-1' 2 + 72171 2 ,GHe 2 } as an (approximate) eigenpair of

A(I - 2zzH) if

JT0(Al - A2 ) I - ( 2 , (2.26)

for some small constant e 2 , because

IIA(I-2zzH)Gde 2 - (A1JO 2 + 72 1j12) Ge 2 12 = 170(01 - 72) 1

If 71 = 72 then we have determined an eigenpair exactly. In case

A1 # A2 we note that Io(A 1 - A2 )1 < lA1 - A2 1, and, moreover, if Ivl 0

or 171 L 1 then 17o(Al - A2 )I << IA 1 - A2 1. Hence, inequality (2.26) may

be satisfied, even if IA 1 - A2 1 > (2. Assume that (2.26) is valid. Then

is replaced by

11



A diag[A1(_
2 ) + A2  , A3 , A 4 ,..., An] E C(n - ) (n-1 )

and if A has close eigenvalues, then deflation is repeated.

The unitary DC method can be used in two ways. One approach is to

divide the original eigenproblem, as well as subproblems so obtained,

until only trivial eigenproblems of orders two and one remain. These

small eigenproblems are solved analytically. From the solutions of small

eigenproblems, the solutions of eigenproblems of larger size are computed,

and this step is repeated until the solution of the original eigenproblem

has been determined. This approach is used in the numerical examples of

Section 5.

An alternative approach is to use the DC technique to generate just a

few subeigenproblems, each of which can be solved independently by some

other numerical scheme, such as the unitary GR method [Grl], or the scheme

in [AGRI], in case the matrix is real orthogonal.

We conclude this section with some bounds of the computational

complexity of the unitary DC method. Assume that H E Cnxn is given in

Schur parametric form (1.1) with positive subdiagonal elements uj. Let n,=

2( for some positive integer C, and subdivide the given eigenproblem until

L eigenproblems for 2x2 matrics are obtained. The latter eigenproblems

are solved analytically. We assume that the number of iterations required

by the rootfinder for t(O) can be bounded independently of n.

Let first n independent processors be available. The reduction of the

original eigenproblem for ti to 11 eigenproblems for 2x2 matrices can be
2

carried out in t1 := O(log2 2) time steps. This computation only requires

the determination of the Schur parameters for the unitary matrices of the

smaller eigenproblems, see (2.3). Let the Schur parameters for all n
2

unitary 2x2 matrices be known. The spectral resolution of all these

15



matrices can be computed in t 2 := 0(1) time steps. Assume that the

partial spectral resolutions (2.21) of all 2 e-j+ l unitary 2j-1 x 2-1 matrices

are known for some j E [2,(] . In order to compute the partial spectral

resolution of all 2 - j unitary 2j x matrices, we have to compute 2j zeros

of each of the 2 E j functions P(0), see (2.8). Hence, a total number of n

zeros have to be computed, and we use one processor to determine each one.

Each function $(0) has 2j terms, and can therefore be evaluated in 0(2j)

time steps for each value of 0. Hence, we can determine all eigenvalues

of all 2
-j unitary 2j x 2 j matrices in t( j ) := 0(2j) time steps. For each

eigenvalue we compute the first and last elements of the corresponding

eigenvector from (2.21). The first and last element of one eigenvector

can be determined by one processor in 0(2j) time steps. These

computations have to be carried out for n eigenvectors by n processors and

therefore require t =j ) = 0(2j) time steps. Hence, the number of time steps

required to determine the partial spectral resolution of H by n processors

is

t 1 + t 2 + t + ) t'(" = O(n) (2.27)
j=2 j=2

Now let n 2 independent processors be available, and assume that the

partial spectral resolutions of all 2 - j+ unitary 2-1 x 2-1 matrices are

known for some j E [2,R] . We have now n processors available for each

evaluation of each of the 2 - j functions $(O). Each of these functions 0(0)

has 2j terms and can for each value of 9 be evaluated in 0(log 2 2j) time

steps. Hence, we can compute all eigenvalues of all 2 -j unitary 21 x

matrices in tJ) 2j ) time steps. The first and last elements of

each eigenvector of each of the 2 &j unitary 2 x 2 matrices can be

16



determined in tZ 0(log2 2') time steps, by using n processors to

compute each sum with 2j < n terms. The initial determination of the
2

unitary 2 x 2 matrices and their spectral resolutions cannot be sped up

essentially by using more than n processors, and requires 0(t1 ) + O(t 2)

time steps. Hence, the number of time steps required in order to compute

the partial spectral resolution of H by n2 processors is

U i) ~ (i) 20(t 1 ) + O(t 2 ) + t 3 + : E4  O(log2 n) + 00) = 0(log2 n) (2.28)
j=2 j=2 j=2

The time complexities (2.27)-(2.28) suggest that the unitary DC method

presented could be attractive for use in real-time signal processing

applications.
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3. Some properties of the unitary DC method

We show some properties of the eigenvectors of 11 and zeros of 0(0).

Analogous results have previously been obtained by Dongarra and Sorensen

[DS, Lemmas 4.2, 4.6 and 4.7] for the DC method for the eigenproblem for

symmetric tridiagonal matrices. The following formulas are used in

several of the proofs:

n 12 A.
>(A) = 1 + 2 I A - A. (3.1)

j=1

n I( 12 A.i
0'(A) : -2 F (A _2 (3.2)

j=(A - A) 2

4' (O) = 't(A)A (3.3)

Lemma 3.1 Let Alp E C, JAl = II = land A i p. Assume that Alp {Aj}IP1,

where A = diag[A1,A 2 ,...,An]. Let vA and vp be defined by (2.20). Then

IvAH vp! = 10(A)4 Gu) 
12  A -

(3.4)

e)I O e eiOiu I e

where A = e , p = e p, 0 < 9 A Om < 2r . In particular, if A and p are

distinct eigenvalues of H, then O(A) = O(p) 0, and therefore VAVP = 0.

Proof. By (2.20), (2.6) and (2.7),

vA = [W[- IA)-z/6(A) (3.5)

and therefore

18



vA\ = 6(A)(A - I6) 1 (A - 6)()

= (6(A)6(p)) - ' n _____J_____ (3.6)
jl (A. - A-) (j (3.6)

Now

=_ _ AAA _ A. A (3.7)
(,j-A) (Aj-,) (Aj-A) (Aj-P) .- P, , Aj-3

Substituting (3.7) into (3.6) yields

V,\ H v = (26(A)b(p)7'i A. 2 n 12JI - 2 1 I(j 12 Ajj=l -1 A j--I i-

and by (2.19), (3.1) and (3.3),

v\A = (( ) ()A) /2A (A) - 4(p)

= (¢I(09),$'(0)) -1/2 ie~
A O iPt

e - e

This shows (3.4). 0

The denominator IA-pI in (3.4) suggests that it may be numerically

difficult to obtain orthogonal eigenvectors when the associated

eigenvalues are very close. The following lemma sheds some light on this

situation, and shows that due to deflation the roots of $(O) are bounded

away from each other.

iO.
Lemma 3.2 Let Aj = e , 1 < j _< n, be the eigenvalues of A, and let z =

be defined by (2.7). Let q be an arbitrary but fixed positive
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constant and assume that the A are pairwise distinct and that 2[(jI > tj

for all j. These conditions can be made valid by deflation. Assume that

the Ai are sorted so that 0 < 01 < 02 < ... < On < 27r, and let On+ 1 := 27r +

01. Let 0 E [0,2x[ be a zero of 4(0), and let k be such that Ok < 0 < Ok+ .

Then

0-0k > l(Ok+1-Ok) Ok+1-O > min{ 1 (k+ ) 0 (3

-k+19  (+1-Ok) = O-0k min i-(Ok+1-k) (3.9)

Proof. Introduce the index sets

11 {j : 0 < O + 2ir < 0 + r, for some t E Z, 1 < j 5 n}

12 {j: 0-7r < Oj + 27rt < 9, for some e E Z, 1 < j _5 n}

Then I 1 nl 12 0 and 11 U 12 {1,2,... ,n}. Further

A + AIj _cot - 5) 0 , j E 11,9-Aj ot 2 > 0 ,E 12•

In particular, k E 12 and, provided that k < n, k+l E 11. If k = n then

1 E I I , Moreover,

cot( 2k1 cot(9 2 i Vj E 11

(3.10)

cot 2 k > cot(O 2 , VJ E 12

From 4(O) = 0, it follows that

I q 1~2 cot(~S I q 1q2 cot(-'j) .(3.11)

jEi1  jEI2
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By (3.10), (3.11) and zHz = 1 we obtain, provided that k < n,

I (k+1 12Cot(-k :5 cot(O-Ok) (3.12)

or, equivalently,

k+1 12 tan('-'k) !Stan 2 Ok1 . (3.13)

If k = n then we define n+l := (n and (3.12)-(3.13) remain valid.

Now assume that

o - Ok > 1(Ok+1 - Ok) (3.14)

We wish to determine a lower bound for Ok+1-0. From tan L < x for

0 < x < 2 it follows that if 0 < Ok+1-O < -, then
-3 3

tan 2 (k+1- < Ok+1 - 0 (3.15)

Substitutin 6 (3.14)-(3.15) into (3.13) yields

I(k+11 2  tan(l!(ok+l - Ok)) < Ok+1 - 0

and from tan(!(ek+l-0k)) > 1(Ok+1-Ok) , we obtain

I(k+112 1(0k+l - Ok) < Ok+ 1  - 0 (3.16)

Finally, substituting 1(k+ 1 1 L into (3.16) yields (3.8).

In order to show (3.9), we note that from (3.10)-(3.11) and zHz = 1 it

follows that

-cot( 0 k+ 1(k1 2  cot( _ 2 k

or, equivalently,

tan C 2 Bk > I (k 12 tan(k± 2 ' (3.17)

21



which corresponds to (3.13). We now assume that

0k+1 - 0 > !(Ok+l - 0k) (3.18)

We would like to determine a lower bound for O-O k* Similarly as in the

derivation of (3.15) we obtain that if 0 < 9 -0k < then
(-3'

tan ) 0 - Ok  (3.19)

From (3.17)-(3.19) and tan(l(k+l-O))>{(9kl-O), we obtain

0 - ok > !(k1 2 -1(k+1 - Ok) (3.20)

Finally, substituting '(ki >
2 _ s into (3.20) yields (3.9). 0

Our final lemma shows that the computed eigenvectors are close to

orthogonal if the zeros of $(9) are evaluated with sufficient accuracy.

Lemma 3.3. Let A = diag[A 1 ,A 2 . . . . 9A, and let A, j be computed

approximations of the distinct roots A, p of 0. Introduce the relative

errors ok, 13 k of A\k-A and Ak-P, respectively, i.e.

Ak - A = (\k - A)(1 + Ok) k 1,2.. ,n .(3.21)

- P = (Ak - p)( + 13k) k( . 1

Assume that for some constant 0 < < 1, 1Ok < and 10k0 < ( for all k,

and that I (( = IftI = 1. Then

Iv Hvb I = IvAHCvp I < (2 + + 2

where C = diag[p,p 2 ..... Pn] with
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Pk - k + Ok + 5k)k (A6(P) (3.22)

(1 + 1 + /3k)\()()

For 7 := e 0 < 0< 7 < 21r, we define 6(7) ( q& (,1))1/2 ( ( ) )1/2

Proof. We first note that since A, j are computed by determining zeros of

4(0), 0 < 0 < 27r, the requirement Il = JAI = 1 is satisfied. Analogously

to (3.6) we obtain

Hn I (k 12
V H, = (()6())- L -

k=1 (Ak - A) (Ak - I

=~~ (ki () -  12
k=l (Ak - A) (Ak - p) + Zk)(1 + Ok)

where the last equality follows from (3.21). Now

Hn I (k 12

0 = VA v, = (6 (A) (6 ,))1E
k=l (Ak - A)(Ak

and (2.19) imply that

n I ( 12
F- 0 --

k=1 (Ak - A)(Ak - p)

Therefore

n - (HAVA( i )) -1 ik 12
(Ak-A) (k-p) (1+6k)3(+k)

n I~k1 2 )

k= (Ak-A)(Ak-p)I

E (()6()) 1 k 1k((+- (3.23)
k= (k- ) Gk -  ' k +'"2
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which shows that nHvp = vAHc\'/ with C defined by (3.22). From (2.19),

(3.3), (3.2) and (3.21) it follows that

6 0(A) A

n I(k1 (-k), (3.24)

k=l (A-Ak) 2

(-A_ A/A

k=l (A-k ) 2  (l+Qk2)

From (-AkA)/(A-Ak) 2 > 0 it follows that A/(A(l+ak) 2 ) > 0 and therefore

A/A _2I ) 2  (1 + )- 2  (3.25)

(1 + Ok) 2

Substituting (3.25) into (3.24) yields 6(A)/6(A) < 1 + c, and similarly one

can show that !(p)/S() _ 1 + f. Hence, by (3.22),

Pk I < ( + 2 (1 + ()2 = c(2 + c)(1 + E)2 (3.26)

(1 C-

Final ly,

Iv H v, j = IVAHCV/l < IIVAII2 lIC112  IIvPII2 = IC112  = max IPk ,- l<k<n

and the desired bound now follows from (3.26). 0
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4. The orthogonal eigenproblem

The computational work required for the real orthogonal eigenproblem

is smaller than for the unitary one. This section discusses these

differences, and considers some details of our implementation of a DC

scheme for the real orthogonal eigenproblem. Our computer program is for

nxrt Cthe case when I1 E R with n = 2 , where C is a positive integer, and we

assume in this section that n is of this form. Many of our comments are

valid for more general values of n, also.

We first note that the subdivision of the eigenproblem for Ii into

smaller eigenproblems, as described by (1.3)-(1.7), does not require any

computational work. Subdivision yields the block-diagonal matrix

A! := G1 G3 G5 . . Gn- 5 Gn-3 Gn.Gn , (4.1)

and we obtain simple formulas for the eigenpairs of each 2x2 block on the

diagonal as follows. Let

G: R , -1 < 7 < 1, a > 0, 72 + (2 = 1 (4.2)

Since G is real, symmetric, orthogonal and has distinct eigenvalues

{, I 2) we have A1 = 1 and A2 = - . Let x, = [ 1, 2] T be an eigenvector of

unit length. Then we can choose

I 1 = 72-1/2( 1  + 7)-1/2

2 = 2-1/2(1 + )1/2, 
(4.3)

and from 7 = (I - 72)1/2 it follows that

1 -- 2-1/2(l - 7)1/2

{ 2 = -2-1 2 ( 1 Y) 112 
(4 .4 )
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Cancellation of significant digits is avoided by using (4.3) if t _> 0 and

(4.4) otherwise. An eigenvector associated with A2 = -1 is given by x 2

[ 2, -J] T .

If 7n = -1 then Gn = In, and the eigenpairs of GnIG n are those of G,_ 1 .

If 7, = 1 we need to determine the eigenpairs of

I °On-1 -/n-i

We find that the eigenvalue A1 = -7n-1 + ian_1 of G' has an associated

eigenvector x 1 := [2-1/2,- 2 -1/2]T, and the eigenvalue \ 2 = -n-1 - ian_1 has an

associated eigenvector x 2 := [2-1/2, 2 -1/2]T.

Note that since the eigenvalues of G given by (4.2) are A = ±1,

independent of -1 < 7 < 1, deflation takes place numerous times during the

computations.

We turn to the computation of the Householder transformation (1 .4).

In oder to avoid cancellation of significant digits, we compute {WSWS+l}

given by (1.6) as follows. If -ts > 0, then we use (1.6a) and replace

(1.6b) by

wS+l - as21/2(1 + ')-1/2 (1 .6b')

In case 7s < 0, we use (1.6b) and replace (1.6a) by

ws := as2-1/2(1 - _ts)"1/2 (1 .6a')

Due to 1I having real-valued elements, the eigenvalues and eigenvectors

of H occur in complex conjugate pairs. Therefore only zeros of ot(O) for

o < 0 < r have to be computed. Moreover,

n 0O - 0\$(0) = E (y2 cot ( 0)2
j=2
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can be simplified. Assume that 0 < Ok < r for some k < n and let

0k+ 1 = 27r - Ok• Then i(kl = 1(k+1l' and we obtain

121
0 kt I ______C ~ Ol 12 cot - ) cot( k-

9 ))
(k 20)) + 1 ( (k)

S1(k12 2 sin 0 = 12 sin 0 (4.5)
cos 6 - COs Ok sin(-0)sin(0k@2)

We use the right hand side of (4.5) in the computations. If 0k = 0 then

we need to evaluate cot(--) as well as cot tan .

The contribution from (4.5) to 4'(O) is

21(, 12 d( si 2 1-Cs0CsO (4.6)
jd6cos cos 21k (cos 0 - cos Ok) 2

The stable evaluation of the right hand side of (4.6) can be accomplished

as described in Table 4.1.

Conditions Evaluate

cck < 0 12 2)
4 + ~

cck > 0 and C >oc + (s 2
s+s- > 02s+s- 2s+s-

cck > 0 and c < 0 C- + (Sk )2
S+ S-<02s+s- \2s+s-)

Table 4.1: Stable evaluation of (1-CCk)/(C-Ck) 2 , where

c cos 0, Ck := cos Ok, s := sin 6, sk := sin ok' s+ := sin(Ok'),

s- :=~ l-)

The interlacing of the zeros of O(A) with the {Ak} = implies that it

easily can be determined whether 0 = 0 or 0 = x are zeros of <(0). Let
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the Ok,1 < k < n, be ordered so that 0 < 0 1  02 < ... < 0 OP < r < Op+

< ... On < 2r. Since the Ak = exp(ik) appear in complex conjugate

pairs, we obtain

oV > 0 : (0) -0

op < 7r 4D¢(Vr) =0

Finally, we consider the computation of eigenvectors vA defined

by(2.20). Let

(1) (1) (1)(1
[ w1 ,w ,.., I w! 1 E Cs

(2) (2) (2) J ) C-
[2 ,W 2  , 2 2n-s j E

A, diag[exp(i0 1 ),exp(i0)2  exp(i0n2)] , 0 < 0 2 < 27r

W2 e ws 1 =: [ (2,2) r(2) () 2

A2,a~x~O1)Iexp(i02  ex) ~ -) , < 0.<21

(1 , o , • • ,,nT

I1  esws =: [( '2

2 elws+l =: [( (2) 9 () .. T -

and A =: exp(iO), 0 < 0 < 2r. Then

W1 (I-A1 HA)-WHesws E (1 - exp(i(O-()) )) J (
j=l

._l{(1) )1

+ [(1-exp(i(O-o i wJ + (1-exp(i(O+ 1)) .

O<0(1)<f2

28



2(1+iot( 2 ))( w. + 6t(1) (1)

- c (1 -(1j

sin)
+ [(Re(C ) wi ) + () IM( (j ) (4.7)

01 (1) (1))  02 sin 
2

- sin 0 ~ sin(J )s-in(' -0~))' Re(C~w
j 0<2 <

We may assume that close eigenvalues have been eliminated from A(i) and A(2)

by deflation, and that therefore the 01) and (2) are distinct Hence the

sums over 0 = 0 and 0 () = r contain at most one term each.J J

Analogously to (4.7) we obtain

He u' j= n-s 0!2)) e p_1C-j!2)w!2)

W2 (A 2 --IA)IW2 HelEs+i (exp(i )-exp(i) (
j=l J

= i cot (2) (2) +1 (1.()) 2Q2)2()(1iot())j j +- 2 2-~tn(),
0 2.(2 22)_2Oj =0 0 7

o (2) (-o!2)

sin( sin( 2

+ e0~ i 2 (sn )0)1 ( 2) (2))

2 + Re((" (4m(8-

())o 2) o a(2) (2o'

1 eio 2)"s n _ ) n(__ 2)))_l ,M(2) (2),-12e-0 Zn 0j si ..... s -i .
O< (2 < 7r 2 wj )

0+0O(2))(2)

(2) (2))  (2)(

+ sin 0 cos 0j j)sin( - sin( - ))"1  Re((,Cj 'j

0< (2) <7r
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The evaluation of 6(A) defined by (2.19) can also be simplified. We have

6(A) ( 12 1 1/26()= E E (2)) 2'
= A-exp( i !T- j=l I A-exp Oj

where, e.g.,

vS'K 12 1(1)

2 s 2(1) 2 (0 )  + 2/c s2( )

j=l )A-exp(iO )12 J) - oa - -

(4.9)

+ 2 ( ) [ 0-0I 20+0!1)'" ]

+ ( Kj I2 sin(_2 ))2 + (sin 2(±, ))2]

The simplifications of this section for the orthogonal eigenproblem have

been implemented in a Pascal program. Several other mathematically

equivalent forms of (4.7)-(4.9) could also be used. We have tried to find

formulas that avoid unnecessary loss of significant digits.
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5. Numerical examples

We report results of some computed examples with an experimental

program for the orthogonal eigenproblem. The program is written in Turbo

Pascal 4.0 and was run on an IBM PC AT computer with unit roundoff

u = 2-3 9 % 2.10 - 12. Our code implements the formulas of Section 4.

Generally very accurate answers are obtained. Lemma 3.2 indicates,

however, that a zero 0 of D(O) may be very close to a singular point 0j of

1D(O) and by Lemma 3.3 the difference O-Oi has to be computed to high

relative accuracy in order to yield nearly orthogonal eigenvectors.

Example 5.2 below shows that, indeed, 0-Oi can be extremely tiny and that

loss of accuracy in both eigenvectors and eigenvalues may result. This

loss of accuracy could be reduced, e.g., by representing 0 and 0j in higher

precision arithmetic.

In this section A E Cnxx denotes the diagonal matrix with the computed

eigenvalues of 11 E Rnxn as entries, and W E Cnxn is the matrix with the

computed eigenvectors. We evaluaLe the residual errors IIH4W-WAIloo and

IIWHW-Illm, where 11 1 denotes the uniform matrix norm.

Example 5.1. This example discusses the application of the unitary and

orthogonal eigenproblems to the construction of Gauss-Szeg6 quadrature

rules. Consider the inner product on the unit circle

<f,g> = f = f(A) g(k) da(A) , (5.1)

with a positive measure da(A). Let Vgk, 0 < k < n, be monic orthogonal

polynomials with respect to (5.1). They satisfy a recurrence relation
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¢oO(A) .= I(5 .1a)

k (A) := Aek_(A) + k 'k_.l(), 1 < k < n, (5.2b)

for some parameters 7k E C such that 17k( < 1 for 1 < k < n. Here

k-l(A) := Ak-lek-l(1/A) is the "reversed polynomial." Let 7n E C be an

arbitrary complex number of unit magnitude, and define On by (5.2b) with

k := n. Writing the recursions (5.2) (for 1 < k < n) in matrix form,

yields the unitary matrix

H = GIG 2 ... GnIGn, (5.3)

whose eigenvalues {Ak__ are the zeros of VIna Here Gk is defined by 5k

according to (1.2) for 1 < k < n. Hence, the parameters {1k} are the

Schur parmaeters for H. Let H = WAWH be a spectral resolution, and define

the weights Pk := IeTWek12 for 1 < I< < n. Then

n
f(A)da(A) = P Pkf(Ak) + fn(f)

IAI= k=1

is a Gauss-Szeg6 quadrature rule with respect to the measure da(A),

because the error (n(f) vanishes when f is any trigonometric polynomial of

degree less than n. See [Gr2] for details. The computed examples

illustrate the case when all Schur parameters 7k are real valued and 11

therefore is real orthogonal.

A particularly simple example is 7k := 0, 1 < k < n, and : -1.

Then Ok(A) = Ak, 0 < k < n, and O,(A) = A" - 1, and therefore

Ak = exp(2ri(k-1)/n)

Pk = 1/n
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These Schur parameters have been used for Table 5.1. In the table "#

defl. close e.v." stands for number of deflations due to close

eigenvalues, and "# defl. small '(kI" is short for number of deflations

due to components (k of z of small magnitude. Two eigenvalues are

considered close if (2.26) is satisfied for (2 := 110-5, and Ik1 is

regarded small if (2.24) is valid for 1  -: .10-5 . These values of E 1 and

C2 are used in all computed examples of this section.

n IIHW-WAIoo IIWHW-111 0  # defl. close e.v. # defl. small I(ki

4 4.6.10-12 1.5.10-11 2 0

8 6.4.10 -12 3.0'10 -1' 8 0

16 1.4.10 -11 5.4.10 il 24 0

32 2.9.10 -11 1.8.10-10 64 0

64 3.9.10 -1' 3.4.10 -10 160 0

Table 5.1: Ik := 0, 1 < k < n; n := -1

For 7 k := 0, 1 < k < n, and i, := 1, we obtain the polynomials V'k(A) =

Ak 0 < k < n, and ?Pn(A) := A" + 1. Hence, the eigenvalues are Ak =

exp(ir(2k-1)/n), 1 < k < n, and the Gauss-Szeg6 weights Pk are the same as

in (5.4). Table 5.2 shows computations for the present Schur parameters,

and differs from Table 5.1 mainly in that fewer deflations take place.

n IHW-WA110o IWHW IIo # defl. close e.v. # defl. small 1(k1

4 7.8.10 - 12 1 .6.10 -  0 0

8 1 .7.10 - " 4.2.10-1 2 0

16 3.1.10 - " 1.6.10-0 10 0

32 4. 1.10 -" 3.5.10-0 34 0

64 5.6.10 -  7.5.10 -10 98 0

Table 5.2: lk := 0, 1 < k < n; 'n =1
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In Tables 5.3-5.4 we have chosen 7k := 0.8, 1 < k < n. This makes the

Ak gather in the left half plane. For the examples of Table 5.3 we have

max Re Ak < 1. For the examples of Table 5.4 we obtain max Re Ak < -1
Ak#l 4 4

n IIHW-WAIK IIWHW-III # defl. close e.v. # defl. small 1(k1

4 2.7.10-12 1.6.10 - 1 1  2 0

8 5.5.10-11 1.8.10-10 8 0

16 5.2.10-11 3.2.10 -10 24 0

32 3.2.10-8 9.3.10-8 63 1

64 3.2.10-8 1.6.10 -7 157 3

Table 5.3: Yk 0.8, 1 < k < n; m := -1

n IlW-WAhlo IIwHW-III0 # defl. close e.v. # defl. small I(k1
4 4.8-10 -11 1.7.10 -10 0 0

8 9.4.10 -11 5.5.10 "10 2 0

16 4.8.10-10 6.6-10-9  10 0

32 6.3.10 -' 2.3.10 -8 34 0

64 4.2.10 -8 1.9.10 - 7 97 1

Table 5.4: 7 k := 0.8, 1 < k < n; n 1

In the last computed quadrature rules of this example we let the 7k, 1

< k < n, be uniformly distributed in the open interval ]-1,1[, and let 7,

be -1 or 1 with probability 1 each. The 7k are determined with the random
2

number generator of Pascal. Table 5.5 shows the result of 30

eigenproblems so generated. The maximum, average and minimum in Table 5.5

are over all 30 eigenproblems.

34



f1tlW-WA11o IIWHW_ II1" # defl. close e.v. # defl. small Nki

max 7.2.10 -' 2.5.10-6 30 0

average 5.8.10 - 8  2.3.10-7 26.5 0

min 2.9-10 - 9  1.5.10-8 22 0

Table 5.5: Uniformly distributed 7k E]-1,1[, 1 < k < n; uniformly
distributed mn E {-I,1}. Max, average and min are over
30 eigenproblems with n := 32

The numerical experiments of Table 5.5 indicate that for many choices

of Schur parameters 7k, the magnitudes I(k1 are not sufficiently small to

give rise to frequent deflations. This behavior has also been observed in

many other computed experiments. In contrast, massive deflation in DC

methods for symmetric tridiagonal matrices often is caused by small

components of the vector correspnding to z = [Ck] nl.

Example 5.2. This example suggests that it might not be possible to

increase the small lower bound for min 10-0J1 of Lemma 3.2 significantly.
J

The Schur parameters for Table 5.6 are obtained by reversing the sign of

the Ik, 1 < k < n, of Table 5.4.

min 10kI # defl. # defl.

n l<k<n IIItW-WAIIOO IIWHW- 111o close e.v. small 1(k1

4 6.6.10-2 6.9.10 -  3.1.1010 0 0

8 F.1.10 -4  7.2.10-10 2.5.10-8 2 0

16 0* 1.2.10 -7  3.1.10-8 10 0

32 0* 7.2.10 -  1.9.10-6 34 2

64 0* 7.2.10 - ' 2.6.10-6 97 5

Table 5.6: ,k: -0.8, 1 < k < n; -n := 1. *The matrix has
numerically the eigenvalue A = 1 of multiplicity two.
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Because ak = 0.6 > 0, 1 < k < n, the matrix II has distinct eigenvalues

mathematically. Numerically two eigenvalues are so close that they are

not distinguished with our present choice of (2 = 1-10-5. A smaller value

of (21 such as E2 = 1.10-6, gave in some numerical experiments larger

residual errors IIHW-WAIIk or IIWHW-III1 . 0
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